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Abstract
-We present an algorithm to compute the -tail" probability that a

random variable exceeds a specifled number. gi- Jin only an expres-
sion for its transform. Our method consists essentially of
summing a power series, so It is easy to perform and requires
little memory. Furthermore. any desired degree of accuracy may
be specified in advance of the computation, after which the
computational effort is nearly linear in the reciprocal of the
prespecified error. We also show that the problem is NP-hard,
suggesting that there exists no procedure significantly better
than ours..--
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A tail probability expresses the likelihood that a

random variable will exceed some specified threshold. Tail
Sprobabilities are important to system designers because values

exceeding certain thresholds may represent unacceptable or even

catastrophic system behaviors. This paper investigates the

problem of obtaining the tail probability of a random variable

* whose transform is given explicitly, but whose distribution

is not necessarily known. This problem typically arises when

, the random variable of interest is a function of given "elemen-

. tary" system variables. Applications include:

(1) Reliability analysis, where the probability of system

failure, a function of known individual component reliabilities,

must not exceed a given tolerance, and

(2) Queuing systems, where the probability of buffer over-

flow or excessive waiting time is sought.

Unfortunately, tail probabilities can be difficult to com-

pute, especially when the random variable's distribution is not

_ available in closed form. The standard "transform inversion

7. formula" is an analytical expression (an integral over an infi-

nite range), not an algorithm. Chebyshev bounds (on the tail

probability) are easily obtained from a transform, but are rarely

tight enough to be useful.
Various methods have been proposed for the related problem

of recovering the density of a random variable from its

transform. But computing a tail probability by first computing

• the density entails new difficulties: the density may not exist;

many density evaluations are needed to perform the tail integral.

Furthermore, these methods are difficult to implement and few in-". AP
clude numerically computable bounds on error and computational

effort. Many of the techniques surveyed by Piessons (1975) and 0

" Plessons and Dang (1976) involve solving large, ill-conditioned 0

systems of linear equations. Jagerman (1978) offered a method

based on the derivatives of the transform. While this paper

was in preparation, Honig and Hirdes (1984) published a method
'odes

,-. similar to, but weaker than ours.
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In this paper. we introduce a more direct algorithm to
compute tail probabilities from transforms. Our method 1s both
faster and simpler than others previously proposed. It requires
virtually no memory and consists essentially of summing a power
series. It also permits the computational effort and worst-case
error to be specified in advance - the smaller the accept-
able error, the greater the effort required. Using the methods

0 of computational complexity theory [1], we show that our method
is a fully polynomial approximation scheme and we also
of fer a strong argument that there is no significantly better
algorithm by showing a formalization of the problem to be NP-
hard. Finally, we provide numerical examples to illustrate the

* manner in which errors are prespecified and the ease with which
approximate solutions are obtained.

Our method can also be used to obtain, from its transform,
the probability that a random variable will fall within any given
interval of the real line. It can also be modif ied (in a
straightforward way) to provide strict upper or lower bounds on
probabilities, rather than arbitrarily close estimates. H-owever,
we have restricted our discussion to approximately computing
(upper) tail probabilities because (1) in our experience, most
applications call for good estimates of tail probabilities; and

(2) tail probabilities are small (typically between 10-2 to 10-9)

and so are especially vulnerable to distortion by the roundoff
errors of floating-point arithmetic. Accordingly, we will refer
to the complementary cumulative distribution function P(X>-J
as the "tail probability f unction."

1. THE PROBLEM AND OUR METHOD FOR SOLVING IT

Since most transforms are interchangeable with minimal
computational effort, we will focus our attention on the fami-
liar (bilateral) Laplace transform. expressed as a function

* of the argument s, and defined by

X as E EesJ ,(1)

where X is the random variable whose distribution is
"transformed." It is customary to view s and X(s) as
c o mpIe x n um b ers .
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The random variable X may be continuous or discrete; we

simply require that the expectation (1.1) exists for any imagi-
Snary s (i.e., any s whose real part is zero). All distributions
" of practical interest satisfy this criterion, notably those,
. such as the waiting time in a queueing system, that are partly

continuous and partly discrete, and to which conventional methods
of transform inversion are inapplicable.

The appeal of transforms is based on the fact that many
- simple operations on random variables correspond to simple

operations on their transforms, while their distributions undergo

more complicated transformations. For example, if X=wt X.

is a sum of independent random variables, then

X -( ' ITl ~~~ l (s), (1.2)Secs - E i"e- Ix 1 E [ •-x ] - IT', eWx, f .C 2

V- that is, the transform of X is merely the product of the

transforms of the components, Xt. By way of comparison, the

density of X is the convolution of the comonents'
densities, and is much harder to compute.

Suppose that we are given a procedure to compute

Xx(S) for any imaginary argument s. Our problem is to
compute the tail probability P[X>A], where A is a given

. parameter. We propose to compute an approximate tail
probability, T, according to the finite summation

U-A + N n 2 -

-= U I im [ (pn - y n) • Zx(-nwoj)", (1.3)
n=1 nit.

where im[-] denotes the imaginary part of a complex number,

and

a = e -D2 w2 I2 , 1 = exp(-AwJ) = cos(Aw) - J sin(Aw),

(1.4)

y - exp(-Uwj) - cos(Uw) - j sin(Uw), W 2n - -jr7U-L'

Note that T is a function of the transform 2(,) and
the threshold A, as well as four parameters: L, U, D and N. We

* will show that these parameters can be chosen to make T as close
as desired to the true solution P[XA]. The computational effort

• is essentially determined by N. We discuss the effort and error
• : associated with this approximation in the two sections that

follow.
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2. COMPUTATIONAL REQUIREMENTS

The standard measures of computational effort are number of
elementary operations (addition, subtraction, multiplication or
division) performed and number of memory "registers" utilized.
To obtain these measures, we must explicitly consider the preci-
sion to which operations are performed, and how values of the

fu transform are obtained. To this end, we introduce two technical
assumptions.

(Al) All operations, as well as evaluations of the

transform, are performed to k significant decimal digits.

(A2) The value of Xx(s) is obtained in a finite number

of operations that do not depend on s.

The sum (1.3) is robust with respect to truncation/roundoff

errors since none of its terms exceeds I in absolute value.
Thus, direct evaluation of T according to (1.3) and (A.1)

results in an error of at most __ 4 1 0 k
There is, however, a faster way to evaluate T: the powers

of a, 0 and 7 in (1.3) may be generated recursively. Seven
memory registers will suffice. they contain (1) the cumulative

" sum to date, (2) a n~', (3) an = , (4 -5) the complex
pair pn, and (6-7) the complex pair y n .  Note that this

I memory requirement is small and does not depend on N.
Transform evaluations may be accelerated in a similar way if

there holds

(A.2') X(s) may be expressed as a finite number of

* operations upon s and functions of s taking the form ec sm

for some number c and some integer m.

Clearly (A.2') ( (A.2). But if (A.2') holds, the trig-
onometric functions in Xx may be computed once and then

recursively generated, as described above. This substantially
decreases the number of operations required to evaluate the
transform, and it increases the memory requirement only by a
finite quantity that depends on 2x but not N.

Since each term in (1.3) requires a finite number of elemen-
tary operations (including updating the powers of a, 1 and y,
and evaluating the transform), only 0(N) operations are required
to compute T.
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3. ERROR ANALYSIS

We now consider how close T will be to the desired tail

probability P[X>A]. Let Z be a zero mean, unit variance, normally

distributed random variable independent of X, and define

8 - P[X-DZ-L mod U-L > A-L mod U-LI, (3.1)

where L, U and D are given numbers such that L << A << U and
D/(U-L) << 1. Intuitively, L and U represent lower and upper
limits (respectively) on the effective range of X (that is,

P[L < X < U] - 1) and D represents the accuracy to which X and A
- are specified. We will view 6 as an approximation to P[X>AI.

To make 8 close to P[X>AI, we must make D very small (i.e.
positive but near zero), L of large negative magnitude and U of
large positive magnitude.

In Appendix A, we show that e is exactly determined by the

infinite sum

e UT a im[$p - y) *x(-nwj)1 (3.2)

. Note that (1.3) contains only the firsl N terms of (3.2).
For clarity of presentation, we break the error by which T

. and P[X>A] may differ into three components, the accuracy Ea,

the precision E., and the truncation Et. These variables will

serve as error bounds in the sense that

P[XA+Ea-(U-L)I - E _ s 0_. P[X>A-Ea.(U-L)] EP

(3.3)
e - Et _. j T + Et

Loosely speaking, (3.3) states that T must lie within Et of

8, and e must lie within E of a probability in the range

from P[XA'] to P(X>A'], where A' differs from A by less than a
" fraction Ea  of the effective range of X. This is illustrated

in Figure 1. Accuracy is expressed as a fraction of the range

U-L of X, so that Eal like the other errors, is dimensionless.

(A fourth source of error, the roundoff caused by computing to k
decimal digits, was discussed in Section 2.)
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*. The error bounds E. and the parameters D and N in
(1.3)-(1.4) will be expressed as functions of L, U, and three
additional variables: r, zp and zt . The first, called

resolution, specifies the desired accuracy:

r (3.4) '::
r=U---"

The second, zP, expresses the desired precision in the sense

that E should be comparable to 6(zp), wherep

OW - P[Z z J e- 2 dx (3.5)

is the familiar tail function associated with the normal
distribution. The third, zt , similarly expresses the desired
truncation error.

No closed-form expression for the integral (3.5) exists, and
the tables in most statistics texts do not extend into the range
of interest to us here. So we have provided a graph of i in
Figure 2. It shows, for example, that z-6 corresponds to the

precision 10 -

The exact relationship between r, zp and z, and the

errors E. is given by

Theorem 1. The bounds (3.3) are satisfied when

Ea W rzp , (3.6)

E max(P(X<L+Dzp], P[X>U-DzV]) * 2 Rz, (3.7)

1.6(38"::E t  = i (t), (3.8) _

t zt

and

z t  2nrN. (3.9)

Proof. See Appendix B.

If L and U are sufficiently far apart, (3.7) and (3.8) imply
. that the errors E and Et may be made extremely small by

selecting modest values of zP and zt (see Figure 2). Spec-

fically, Ep and Et can be made within 10 -.k (that is,

negligible when k-digit decimal arithmetic is used) by choosing
Z and z, to be O(k). Moreover, for fixed zp , (3.6) shows

that the accuracy Eu is proportional to the resolution r. But
(3.6) and (3.9) combine to form

6



p Ea N j (3.10)

Thus we cannot simultaneously guarantee fast execution and good
accuracy. the choice of r will dictate the desired tradeoff
between these two aspects of the heuristic's performance.

If we neglect errors on the order of k-digit roundoff, (3.10)
shows our method to be a fully polynomial (indeed, linear)
approximation scheme il.

4. INTUITIVE MOTIVATION

Our method was inspired by the concept of bandwidth as
a measure of the inherent complexity of a function, and the
notion that by limiting bandwidth, essential form may be retained
while complexity is reduced. Modern communications systems
utilize this technique to transmit approximate signals that
require only a fraction of a line's transmitting capacity; in

" this way, thousands of signals may be simultaneously transmitted
on a single line.

The concepts of bandwidth and transform are
closely related. Any signal may be viewed as a linear
combination of sinusoidal components. A transform expresses the

. magnitude of each component, and the bandwidth is the range of
component frequencies contained in the signal. A limited-
bandwidth signal approximation is obtained by erasing sections of
the transform of (intuitively, removing part of the complexity
in) the original signal. If we eliminate the components whose
frequencies are too small or too large to be of practical
concern, we are left with a finite band of frequencies that
express the signal's essential characteristics.

In computing tail probabilities from transforms, we view
the probability density as a signal to be approximated. Every
evaluation of the transform yields information about this
density, and we wish to make do with as few evaluations as
possible. So we eliminate low-frequency components by
neglecting the density outside the range L to U, and we eliminate
high-frequency components by permitting A to be displaced by a
small multiple of D. More specifically, restricting the
probability distribution to the range [L, U] restricts its
frequency components to integer multiples of w, and adding -DZ
to X multiplies the transform of X by a transform whose values
decrease rapidly as the frequency increases beyond 1/D. We are
left with an approximate density whose tail probability is
easily computed.

7
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S. COMPLEXITY ANALYSIS

We now establish the difficulty of computing tail probabi-

lities exactly, even from very simple transforms. We for-

malize the problem as follows: Evaluate P[X>A] given a number A

and a transform 2x(s) expressed in closed form, that is, as

a finite word generated (according to the grammar of complex

arithmetic) by real numbers and the symbols s, e, , -, -, /,

T, , and .

We show that this problem is at least as difficult (in the

worst case) as the following knapsack problem: Given M+1

positive integers t,, ... tm , and A, is there a subset S of

V (1,...,M) such that t,=A? This problem is known to be
ies

NP-complete [Il]. Hence,

Theorem 2. Computing tail probabilities from transforms is

NP-hard.

Proof. Let X = X1 , with the X1 mutually independent

3 and

r t,, with probability 2

0, with probability

If we could quickly compute P[X>A-11 and P[X>AJ, then we could

also quickly compute

P[X>A-1] P[X>A] P[X-AJ 2- W(S (I..M) Xti A)

to see whether it is non-zero, and so determine whether the

knapsack problem has a solution. But the knapsack problem is NP-

hard, so the computation of tail probabilities must be NP-hard as

well. N

. .-. .... ....................... ......-......... . . ..... .. .
" - b 
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-' In this sense, the computation of tail probabilities from

transforms resembles the knapsack problem, for which fully poly-

nomial approximation schemes are also available (Lawler (1979)1.

Note, however, that our definition of the error Ea refers to a

-' perturbation of the parameter A, whereas the more common defini-

tion of error refers to a perturbation of the result, T. This -

* distinction is necessary because we are dealing with real num-

bers, not integers, and because the tail function P[X>AI may be

discontinuous..-

Like many complexity results, Theorem 2 states that some

instances of a problem are hard to solve. Of course, other

instances are easy to solve, for example, problems involving

transforms of uniformly distributed random variables. It is

important therefore to consider whether there are large

subclasses of problems for which the conclusion of Theorem 2

. fails to hold.

The proof of Theorem 2 rests on a connection between certain

discrete random variables and the knapsack problem. When X is

discrete, the tail probability P[X>A] is discontinuous in A, and

this obviously makes the task of computing tail probabilities

more -difficult. One might be tempted to conclude that disconti-

nuity alone is responsible for the conclusion of Theorem 2, i.e.,

V that only the tail probabilities of discrete random variables

are difficult to obtain. But this is not SO: The random

variables whose tail probabilities are sought can be restricted

to have bounded density, yet the result of Theorem 2 still holds;

simp'" redefine the random variables Xi in the proof to be

- uniformly distributed over [0, I/M] U [ti, t+1/M]. Similarly,

the conclusion of Theorem 2 can be shown to hold even if the

density is required to be continuous, or continuously_.-

differentiable.

Thus, the class of transforms from which tail probabilities

are hard to obtain is nontrivial, and Theorem 2 implies (under

the customary complexity assumption PONP) that no procedure

6 exists that will quickly compute tail probabilities from general

transform specifications. This is strong circumstantial evidence

that there can be no significantly better method than the one we

have proposed.

p 9
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6. NUMERICAL EXAMPLES

We now provide numerical examples to illustrate the advan-N tages Of our approach. Four random variables will be considered.
In each case, we will seek to determine the tail probability that

* X exceeds A p+ 4 a, where p and a denote the mean and
* standard deviation (respectively) of X. These random variables

are as described below. A summary of problem parameters is given
yi in Table 1. Note that each of the transforms shown in Table I

* satisfies the assumption (A.2') defined in Section 2.

PROBLEM A. XA is a normal random variable of zero mean
and unit variance. We seek to compute 0(4). The exact
solution is available in "probability tables." However, it -

* should be noted that no closed-form expression for the integral
* (3.5) exists, and such tables are not easy to compute!

PROBLEM, B. XB is a binomial random variable representing -

the number of heads obtained in 100 f lips of a fair coin. We
seek the probability of more than 70 heads. The exact solution
is obtained by summing the discrete probabilities of 71 through
100 heads. As predicted by the Central Limit Theorem, the solu-
tion to problem B is close that of problem A.

IPROBLEM C. Xc denotes the total earnings from twenty
games, where the probability of winning the m-th game is
1/41W-, and the winning payoff is -f1W. (A losi ng game
earns nothing.) W seek the probability of winning more than
S 51.41 .The exact solution is obtained by enumerating outcora~es.

PROBLEM D. XD) denotes the time from arrival until service
* begins for a customer in an H/G/l queue characterized by an

arrival rate of one per minute, and a service duration of 40
seconds exactly in 90%~ of the cases, and 2 minutes exactly for
the remaining 10%. (Service times are assumed to be mutually
independent.) The transform, mean and variance of XD are
available from the P-K formula of queueing theory. We seek the
probability that a Customer must wait longer than 11.61 minutes.
No method (other than transform inversion) is available to com-
pute the exact solution. In problems of this kind, simulation is6
often attempted, but simulation, by its very nature, cannot
efficiently provide good estimates of small probabilities. The
solution shown in Table 1 was obtained by the method given in
this paper.

The values of U and L in Table 1 were chosen to span twice
the effective range of each random variable. In problem D. the

* effective range was determined by quickly estimating tail
- probabilities with high precision but low accuracy to show that

P [XD ) 3 0] , '1.

I 10



Figure 3 shows the relationship between accuracy error E,
* and the approximate tail probability, T, obtained when EPand

Et are vanishingly small. Note that, for each problem, T had

come close to its limiting value by the time Ea reached 10I5 0.3
The rate of convergence depends on the smoothness of the

* tail probability function - see Figure 1. For Problems A, C and
D, T approached the true tail probability (as Ea -'*0). In the
case of Problem B, it approached P[X>701 - 0.5 P(X-701, which is
not strictly correct, but satisfies (3.3) for any Ea>0. Note
that the limiting values for Problems A and B nearly coincide, as
predicted by the Central Limit Theorem, but that B converges more
slowly, presumably because of the discontinuities in its tail

- probability function.
Figure 4 shows the truncation error IT-61 as a function of

the normalized computational effort zt - see (3.9). The bound
on truncation error (3.8) is also shown in the upper right corner
of each graph. Case A converges the f astest - because the
magnitude of its transform decreases rapidly as the index n in

* (1.3) increases. Case B remains constant over many iterations
* before changing, and then goes through a few intermediary stages

with relatively large error. This demonstrates that the sum
(1.3) cannot safely be terminated af ter its terms have remained
small for a long time; they may suddenly increase periodically!

Note particularly that T approaches e, not the true tail
* probability, as N increases. Quick convergence in the sense of
* Figure 4 does not imply that a good approximation has been

o btai ned.

7. CONCLUSIONS

The problem of determining a tail probability P[X>AI. given
only the transform of X, has been shown to be NP-hard, implying
t h at a computationally efficient algorithm to solve it exactly

* probably does not exist. Instead, we propose to use the simple
approximation T given by (1.3) -(1.4). The closeness of this
approximation is given by (3.3). Eqs. (3.7)-(3.8) show how the
"preci si on" e rrors can be made arb itrarily small1, and (3.10)
expresses t he t ra de o ff between "accuracy" errors an d
computational effort.

We anticipate that this method will be particularly useful
when computational resources are scarce and rough estimates Of
the tail probability will suffice, notably, when the threshold A
is not exactly known, or when tail probabilities are required to
evaluate alternatives in subroutines of large-scale optimization
programs. However, when "exact" solutions are called for, our
method will generally perform at least as well as, and certainly
more efficiently then, others currently available.
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APPENDIX A

DERIVATION OF THE FOURIER SERIES (3.2)

L t

{1, if y-L mod U-L > A-L mod U-L.
g(Y) 0 0, if y-L mod U-L < A-L mod U-L. (A.1)

Since g(.) is periodic, it is given by the exponential Fourier

series 51-

g(y) = C , (A.2)

where

Cn tr ernhJ g(y) dy = n -+1, ±_2,
n2j .... 3)

U-L L 
"-'L-

and , and w are given by (1.4). If Y is any random

variable, then by (A.2) and (1.1),

E[g(Y)] Cn E en ly  n C , y(-nwj). (A.4)

Moreover, if Y is continuously distributed, then we may neglect

the points of discontinuity of g.,and (A.1) implies

E(g(Y)J " Prob(Y-L mod U-L > A-L mod U-LI. (A.5)

13
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*Let YI X-DZ, where X. D arnd Z are as in (3.1). Y is

continuously distributed, so (A.5) holds. By (3.1) and (A.5).

8 E~g(Y)I, CA.6)

* and by (A.4) and (A.6),

e C. Zy(-nwj). (A.7)
nz-w

Since Y-X-DZ, (1.2) implies Xy(s) - x(s) * D~s and so (A.7)

becomes

8 C. Zx(-nwiO) Z-DZ(-nwj). (A.8) _

* Moreover -DZ is normally distributed with mean 0 and variance

D , SO V.DZ(S) - esZ a 2, where a is defined by (1.4).

Substituting this into (A.8) yields

e n C~ Zx(-KwJ). (A.9)

By (1.1), t(sw) - cs) and by (A.3), C-n-Cn* (where *denotes

complex conjugate). So (A.9) may be written as

e -c. 2 a reai(cn Xxj-nwJ)). (A.10)

Substituting (A.3) into (A.10) produces (3.2).

14
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APPENDIX B

PROOF OF THEOREM I

SBy (3.1),

e < P[X-DZ>A or X-DZ<L] < P[X>A+DZ] P(XcL DZI,

0 a P[X-DZaA and X-DZU] - P[XA DZ] - P[X>U.DZ],

Now

P[X>A DZJ - P[XA DZIZ>-zp] P(Z>-z e ] P[X>A+.AZZ<-zpJ P[Zc-zp]

< P[X>A+DZIZ>-zp] + P[Zc-zp]

s P[X>A-Dzp] + Rzp}.

Proceeding similarly to bound the remaining probabilities on the

right-hand side of (B.1), we obtain

e < P[X>A-DY] * P[X<L Dz+ 2 Rzp),

(B.2)

e a PXaA Dz - P[XU-Dzp] - 2 zp).

Now (B.2) and (3.6)-(3.7) imply the first part of (3.3).

We now turn our attention to the second part of (3.3). By

(1.1) and (1.4),

jj Tx (- n wl)jj <_ ., .111 ,11 :_S, l ll < I. ( B).3 ) .

By (3.2) and (1.3),

m n2

I.. 
1T 

- f::x(-wj)J (B.4)

Now

L1



w~~i 

* ".,..

IT - e

,,=,.s -R' [Ilpill * II ," )II Z lx[-nwj)ll (by (B.4)) .:-"

J+1 nitn.2 (by (B.3))

N1 n+l ( (since n>N over the range of summation) "

Ni IN J ri 2 dn (by monotonicity of the integrand)

- N - " dn (by (1.4) and (

* =2 eZ 2 /2 dz (z = 2nrn)

- -2 [z7 ) (by (3.5) and (3.9))

< E . (by (3.8)) .-

This establishes the second part of (3.3).
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Figure 1. Geometric interpretation of Ea E and E
a p t
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Figure 3. Approximate tail probability T as a function of
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